深圳市晶导电子有限公司

ShenZhenJingdao Electronic Co.,Ltd.

1. 概述

JD9203ES15 是单通道 LED 恒流驱动控制集成电路,可直接驱动高压 LED 灯串, 输出电流由外接采样电阻设定,设置范围 5mA~140mA,输出电流恒定在设定值,线路 简单,外围元器件极少。

2. 特点

- 外围电路简单,无需磁性元件
- 可并联应用
- 可与LED共用PCB板
- LED电流可外部设定
- 应用线路无 EMI问题
- 内置500V高压MOS
- 具有过温电流调节能力
- 采用可利用PCB板辅助散热的ESOP-8封装外形

3. 封装

3.1 封装外形

型号	JD9203ES15
封装外形	ESOP-8
应用功率	12W

3.2 引脚图

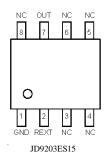


图1. 引脚图

3.3 引脚说明

JD9203ES15引脚说明

引脚	符号	描述
1	GND	接地端
2	REXT	电流采样端
3, 4, 5, 6	NC	空脚
7	OUT	输出端(内置 MOS 管漏极,内部电源供电端)
8	NC	空脚

4. 应用

4.1 应用范围

- LED日光灯管 T5/T8/T10…
- LED 球泡灯/玉米灯/蜡烛灯···
- 其它小功率的 LED 照明

4.2 典型应用

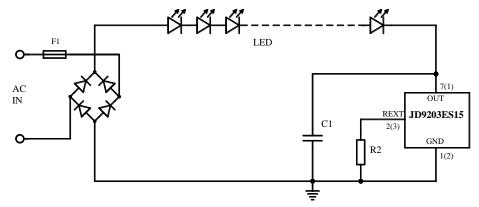


图1. 贴片电容应用方案

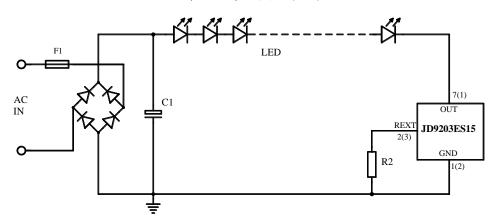


图2. 电解电容应用方案

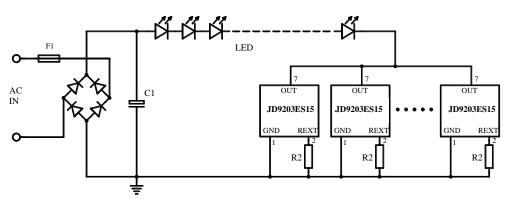


图3. 并联应用方案

ShenZhenJingdao Electronic Co.,Ltd.

5. 电特性

5.1 极限参数

项目	姓旦	额统	单位	
	符号	最小值	最大值	
采样端电压	V_{REXT}	-0.5	8	V
输出端电压	V _{OUT}		500	V
工作电流	I_{OUT}		140	mA
功率损耗(T _A =25℃)	P_{D}		1.25	W
热阻(T _A =25℃)	Θ_{JA}		65	°C/W
ESD 保护(人体模式)	ESD	2000		V
贮存温度	T_{STG}	-55	150	$^{\circ}\!\mathbb{C}$
结温*	T_{J}		150	$^{\circ}$
焊接温度(锡焊,10秒)	T_{B}		270	$^{\circ}$

^{*}推荐工作温度0℃-100℃

5.2 电气性能

T_A=25℃(除非另有说明)

参数名称	佐 .旦.	测试条件	额定值			光
参数名称 符号 测试会		人 人名	最小值	典型值	最大值	単位
输出端击穿电压	BV_{OUT}	I _{OUT} =-10mA	500			V
启动电压	V _{OUT_S}	I _{OUT} =-30mA		7.5		V
采样电流	I_{REXT}		5		140	mA
采样端基准电压	V_{REXT}		0.58	0.6	0.62	V
温度补偿	TSC			135		$^{\circ}$

6. 设计信息

6.1高压 LED 串的设计

设计所需要的参数:

- (1) 交流输入电压 V_{AC}
- (2) LED 工作电流 I_f
- (3) LED 在 I_f 下的正向电压 V_f LED 的数量由下式确定:

$$N = \frac{V_{AC} \times 1.414 - V1}{V_{\mathcal{L}}}$$

其中 VI 是工作时 IC 的压降(即 V_{OUT}),可以根据实际应用中的散热条件适当调整,建议 IC 功耗不大于 1.2W。

6.2 效率设计

效率为 LED 消耗功率与输入功率之比:

$$\eta = \frac{P_{\scriptscriptstyle LED}}{P_{\scriptscriptstyle IN}} = \frac{n \times V_{\scriptscriptstyle f} \times I_{\scriptscriptstyle f}}{(V_{\scriptscriptstyle AC} \times 1.414) \times V_{\scriptscriptstyle f}} = \frac{n \times V_{\scriptscriptstyle f}}{V_{\scriptscriptstyle AC} \times 1.414}$$

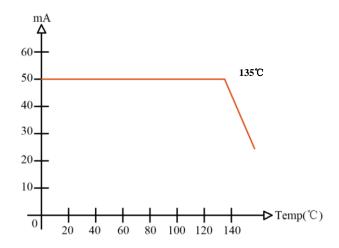
其中 V_{AC} 是 AC 输入电压, V_f 是单个 LED 工作时的电压降, I_f 是 LED 的工作电流。 线路中串联的 LED 数量 N 越大,系统工作效率越高。

设计过程中,可以根据实际应用条件合理调节 VI,优化效率。

6.3 恒流控制,输出电流设置

JD9203ES15 可以通过外部电阻精确的设定工作电流。工作电流计算公式:

$$I = \frac{V_{REXT}}{R2}$$


注: 布 PCB 线路时芯片要有良好的散热环境。

电解电容 C1 值越大, 电压 Vin 纹波越小, 供给 JD9203ES15 工作的电压纹波 也越小。C1 值根据 LED 灯总工作电流而定: 电流越大, C1 容量越大, 一般 取值 4.7uF/400V~22uF/400V。

6.4 过温调节功能

为了提高芯片工作可靠性, JD9203ES15 采用过温调节设计, 当驱动电源过热时,逐渐减小输出电流,从而控制输出电流及温升,使电源温度保持在设定值,以调高系统可靠性。芯片内部设定过温调节温度点为 135℃。

当芯片温度超过 OTP 点时输出功率会逐渐减小,以防止温度过高损坏芯片。 因此在应用时要考虑芯片的工作温度。输出电流随芯片温度变化曲线见下图: ShenZhenJingdao Electronic Co.,Ltd. 高压单通道 LED 恒流控制集成电路

6.5 应用例

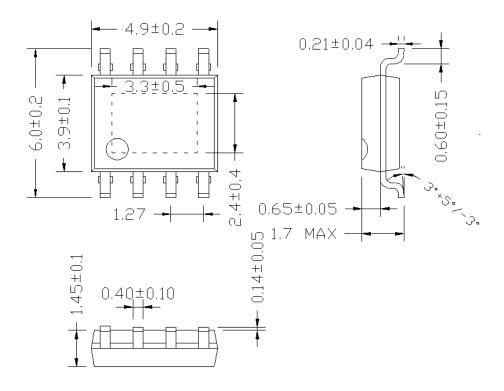
要求:交流 220V 输入, LED 电流 25mA, IC 上的压降 50V 灯参数确定如下:

- 1. 测定 V_f : 测得 LED 在 25mA 电流下的正向压降 V_f 为 3.2V。
- 2. 确定灯串的 LED 数量:

己知: V_{AC}=220V, V_f=3.2V, VI=50V

$$N = \frac{V_{AC} \times 1.414 - V1}{V_{f}} = \frac{220 \times 1.414 - 50}{3.2} \approx 81$$

3. 取样电阻计算:


$$R2 = \frac{V_{REXT}}{I_f} = \frac{0.6V}{25mA} = 24\Omega$$

JD9203ES15 可根据不同应用环境和需求灵活地串联在 LED 串之前,中间或之后。

高压单通道 LED 恒流控制集成电路

7. 外形图

ESOP-8 外形图(单位: mm)

版本修改信息:

V1.0......初始版本。 V2.0.....更改地址。