

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

恒压、离线电流模式 PWM 控制器

1. 概述

JD3489 是一款针对离线式反激电源设计的高性能 PWM 控制器。

芯片内集成有通用的原边恒流控制技术,可支持断续模式和连续模式工作,适用于 恒压、恒流输出的隔离型电源应用中。

JD3489 内部具有高精度 65kHz 开关频率振荡器,且带有抖频功能可优化 EMI 性能。 芯片采用绿色节能模式和打嗝模式工作,能满足 6 级能效的要求。

JD3489 集成有完备的保护功能,包括: VDD 欠压保护(UVLO)、VDD 过压保护(OVP)、逐周期电流限制、短路保护(SCP)、过载保护(OLP)、过热保护、软启动、VDD 箝位和 CS 管脚开路保护等。

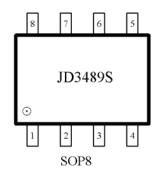
2. 特点

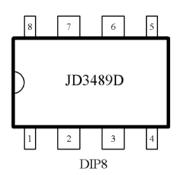
- 待机功耗<75mW。
- 固定 65KHz 开关频率。
- 绿色省电模式和打嗝模式工作。
- 超低启动和工作电流。
- 集成抖频功能优化 EMI。
- 集成内部斜率补偿的电流模式控制。
- 集成线电压和电感量补偿的恒流技术。
- 集成自恢复模式的保护功能:
 - ◇ VDD 欠压保护(UVLO)
 - ◇ VDD 过压保护 (OVP)
 - ◇ 过热保护(OTP)
 - ◇ 逐周期电流限制
 - ◇ 过载保护(OLP)
 - ◇ 短路保护(SCP)
 - ◇ 前沿消隐(LEB)
 - ◇ CS 管脚开路保护

地址:深圳市宝安区石岩街道洲石路中集创谷产业园 B 栋 1-3 层

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489


恒压、离线电流模式 PWM 控制器


3. 封装

3.1

型 号	封 装
JD3489S	SOP8
JD3489D	DIP8

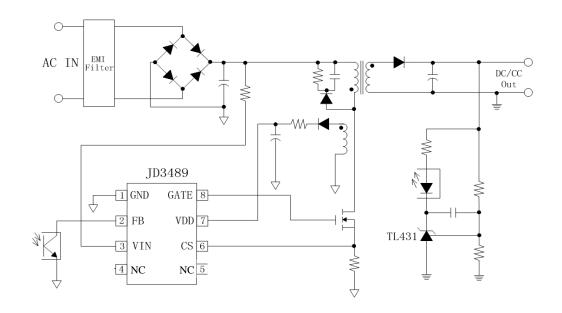
3.2 管脚排列:

3.2 管脚说明:

引脚	名称	I/O	描述
1	GND	P	芯片参考地
2.	FB	Ţ	反馈输入管脚。闭环控制时连接于光电耦合器相连, 此脚位电压决定
2	ГБ	1	了 PWM 驱动信号的占空比和 CS 管脚的关断电压
3	VIN	I	电源启动
4	NC		空脚
5	NC		空脚
6	CS	I	电流检测输入端
7	VDD	P	电源端
6	GATE	О	外部功率 MOS 管栅极驱动端

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

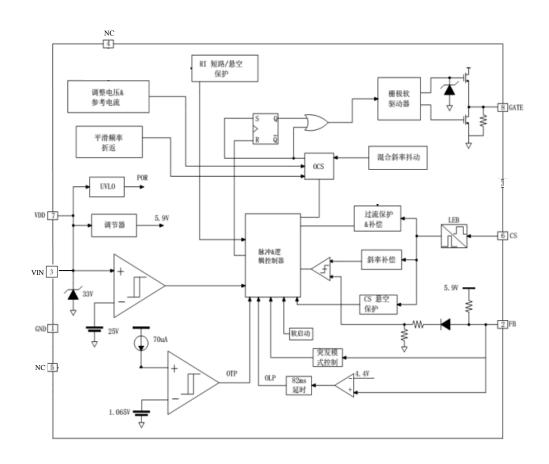

恒压、离线电流模式 PWM 控制器

4. 应用

4.1 范围

- 充电器和适配器
- •电机驱动电源

4.2 典型应用线路



ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

恒压、离线电流模式 PWM 控制器

5. 功能框图

6. 电特性

6.1 极限参数 (备注 1)

参数	数值	单位
VDD 直流供电电压	30	V
VDD 直流箝位电流	10	mA
FB, CS, 电压	-0.3~7	V
GATE 电压	20	V
封装热阻结到环境 (DIP8)	90	°C/W
封装热阻结到环境(SOP8)	150	°C/W
最大结温	175	$^{\circ}$
储藏温度范围	-65~150	$^{\circ}$
焊接温度 (焊接, 10 s)	260	$^{\circ}$
ESD 人体模型	3	KV
ESD 机器模型	250	V

地址:深圳市宝安区石岩街道洲石路中集创谷产业园 B 栋 1-3 层

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

恒压、离线电流模式 PWM 控制器

6.2 推荐工作条件 (备注 2)

参数	数值	单位
VDD 供电电压	10~26	V
工作环境温度	-40~85	$^{\circ}$ C

6.3 电气参数(T_A=25 ℃ ,VDD=18V,除非另有说明)

符号	参数	测试条件	最小	典型	最大	单位
供电部分(VDD	管脚)					
I_{VDD_st}	VDD 启动电流			2	20	uA
I_{VDD_Op}	VDD 工作电流	V _{FB} =3V,GATE=1nF		1.2	2	mA
$I_{VDD ext{-standby}}$	VDD 静态电流			0.6	1	mA
$V_{\rm DD_ON}$	VDD 开启电压		19	21	21.5	V
$V_{\mathrm{DD_OFF}}$	VDD 关断电压		8	9	10	V
V_{DD_OVP}	VDD OVP 阀值		29	31	33	V
V_{DD_Clamp}	VDD 钳位电压	I(VDD)=7mA	33	35	37	V
反馈部分(FB	管脚)					
V _{FB_Open}	FB 开路电压			5.9		V
V _{FB_Short}	FB 短路电流	FB 短路		0.3		mA
Z_{FB-IN}	FB 输入阻抗			20		ΚΩ
A_{CS}	PWM 增益	$\triangle V_{FB}/\triangle V_{CS}$		2.0		V/V
$V_{\rm skip}$	驱动停止 FB 电压阀值			1.0		V
V _{TH-OLP}	过流保护 FB 电压阀值			3.6		V
$V_{D\text{-}OLP}$	过流保护延时时间			75		ms
电流采样部分 (CS 管脚)					
T_{LEB}	前沿消隐			250		ns
Vcs(max)	过流保护阀值		0.97	1.0	1.03	V
T_{D_OC}	过流保护关断延时	GATE=1nF		70		ns
振荡器部分						
VCC_REF	恒流输出基准		194	200	206	mV
Vcomp_H	COMP 高箝位电压			3		V
Vcomp_L	COMP 低箝位电压			0.7		V
过热保护部分						
F _{OSC}	正常工作频率		60	65	70	KHz
$\triangle F(\text{shuffle})/F_{OSC}$	抖频范围		-4		4	%
T(shuffle)	抖频周期			32		ms
D _{MAX}	最大占空比			66.7		%
F _{Bust}	打嗝模式工作频率			22		KHz
过热保护部分			-	•		•
T _{SD}	过热关断	(备注3)		165		$^{\circ}$ C
T_{RC}	过热恢复	(备注3)		140		$^{\circ}\!\mathbb{C}$

地址:深圳市宝安区石岩街道洲石路中集创谷产业园 B 栋 1-3 层

JD3489 恒压、离线电流模式 pwm 控制器

ShenZhen Jingdao Electronic Co.,Ltd.

驱动部分(GAT	E 管脚) (备注 3)					
V _{OL}	输出低电平	Igate-sink=20mA			1	V
V _{OH}	输出高电平	Igate-source=20mA	7.5			V
$V_{G ext{-}Clamp}$	输出高钳位电压	VDD=24V		13		V
T.r	输出上升时间	GATE=1nF		150		ns
T.f	输出下降时间	GATE=1nF		60		ns

- 备注 1: 超出列表中极限参数可能会对芯片造成永久性损坏。极限参数为额定应力值。在超出推荐的工作条件和应力的情况下, 器件可能无法正常工作,所以不推荐让器件工作在这些条件下。长时间工作高于推荐的最大工作条件下, 会影响器件 的可靠性。
- 备注 2: 超出上述工作条件不能保证芯片正常工作。
- 备注 3: 参数取决于设计,批量生产制造时通过功能性测试。

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

恒压、离线电流模式 PWM 控制器

7. 功能描述

JD3489 是一款采用电流模式控制的反激电源 PWM 控制器,适用于电机驱动电源、适配器和充电器等场合。可支持断续模式和连续模式工作,适用于恒压输出的隔离型电源。

7.1 系统启动和工作电流

在芯片开始工作之前,JD3489 仅消耗典型值为 2uA的启动电流,超低启动电流可以帮助增加启动电阻阻值以达到降低由直流母线流经启动电阻的电流和待机功耗的目的。当 VDD 电压超过开启电压(典型值 21V), JD3489 开始工作,并且芯片工作电流上升到 1.2mA(典型值)。之后 VDD 电容持续为芯片供电直至输出电压建立后,由辅助绕组为芯片供电。当进入到打嗝模式后,芯片的工作电流将继续降低, 由此在低于 30W 的应用中可以获得低于75mW 的待机功耗。

7.2 带有抖频功能的振荡器

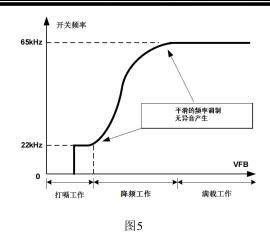
在 JD3489内部通过校准 PWM 开关频率被严格固定为 65kHz。为了改善系统 EMI 性能,芯片自带±4%范围的抖频功能。

7.3 绿色节能工作模式

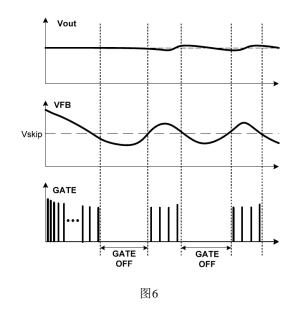
由于在轻载和空载状态下,系统的损耗主要来源于与开关频率成正比的开关 损耗,所以为了满足绿色节能的要求,有必要通过打嗝或者降低开关频率的方式 降低开关周期次数,以提高系统平均工作效率。

7.4 平滑的频率调制

在轻载状态下, JD3489采用了一种专利的"平滑的频率调制"技术调节开关频率。相比于其他频率调制设计,此技术可以平滑的调节开关频率而无异音产生。


地址:深圳市宝安区石岩街道洲石路中集创谷产业园 B 栋 1-3 层

ShenZhen Jingdao Electronic Co.,Ltd.


JD3489

恒压、离线电流模式 PWM 控制器

7.5 打嗝模式

当负载非常小时,系统便进入到打嗝模式工作。当FB 电压低于阈值 Vskip时, JD3489 便停止开关动作而输出电压开始降低(如图 6 所示),之后引起FB 再次上升。一旦当 FB 电压 超过阈值 Vskip 时,芯片重新开始开关动作。通过打嗝模式工作,降低了开关频率和待机状态下的系统功耗。

7.6 内部斜率补偿

对于传统的控制模式,如何避免在连续模式下占空比超过 50%时,出现系统稳定性问题是关键。JD3489 内部采用在采样电压信号上叠加斜率电压的方式实现斜率补偿,这样极大的增加了系统工作在连续模式下的稳定性,避免了次谐波振荡的产生和降低输出电压纹波。

ShenZhen Jingdao Electronic Co.,Ltd.

JD3489

恒压、离线电流模式 PWM 控制器

7.7 前沿消隐 (LEB)

由于原边 MOSFET 集成电容和副边输出二极管反向恢复的问题,当功率 MOSFET 开通瞬间,在采样电阻上产生一电压尖峰。为了避免 GATE 信号被错误关断,芯片内部集成有前沿消隐功能。在此时间内(典型值 250ns), PWM 比较器停止工作且GATE 输出不允许关断。

7.8 过热保护(OTP)

当芯片结温超过 165℃ 时,芯片停止工作,只有当结温低于 140 ℃ 时,芯片才能重新开始工作。

7.9 软启动

JD3489 内部集成有典型值 2ms 的软启动功能,通过启动阶段逐周期增加过流保护阈值的方式实现。此功能有利于避免变压器的饱和和降低副边二极管的应力。每次系统的重启都将伴随一次软启动过程。

7.10 过载保护(OLP、恒压输出应用)

在恒压输出模式下,当过载发生且 FB 电压超过VTH_OLP 持续时间超过 75ms 时,芯片便进入到过载保护模式并开始自动重启。 75ms 的保护延时有利于避免在开机过冲中错误保护。

7.11 VDD过压保护(OVP)和钳位

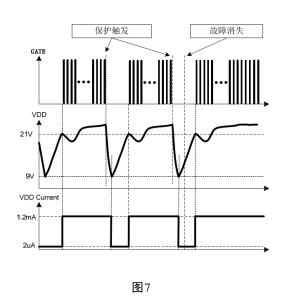
当 VDD 电压超过 31V (典型值)时,芯片停止开关动作。当 VDD 电压 开始下降并低于关断电压VDD_OFF (典型值 9V),系统开始重新启动。芯片 内部集成 35V (典型值)的箝位稳压管,有效地避免了芯片的损伤。

7.12 CS管脚开路保护

当 VDD 电压超过开启电压 VDD_ON (典型值 21V)后,在开始开关动作之前首先检测 CS 管脚是否开路。如果 CS 管脚被检测为开路状态,则不允许开关动作并进入到自动重启模式;否则,系统开始正常工作。利用此种保护方式

地址:深圳市宝安区石岩街道洲石路中集创谷产业园 B 栋 1-3 层

ShenZhen Jingdao Electronic Co.,Ltd.


JD3489

恒压、离线电流模式 PWM 控制器

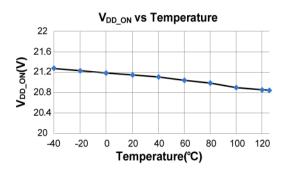
增强了系统的可靠性。

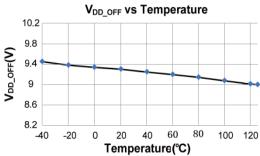
7.13 自动重启保护

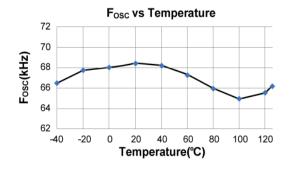
如图 7 所示,一旦某种故障被检测到时,芯片立即停止开关动作,之后由于芯片无法通过辅助绕组供电而使得 VDD 电压下降。当 VDD 电压下降到关断电压 VDD_OFF(典型值 9V)时保护逻辑被复位且芯片工作电流同时降低至启动电流 IVDD_st(典型值2uA),之后 VDD 电压再次重新上升。当 VDD 电压超过开启电压 VDD_ON(典型值 21V)时再次重新开关动作。如果故障仍然存在,那么系统将继续重复以上保护动作;否则系统恢复正常工作。依靠以上功能,系统可以针对性地开始和停止开关动作并直至故障消失。

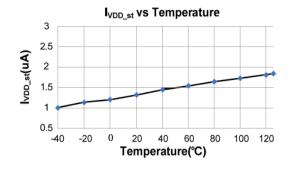
7.14 软驱动

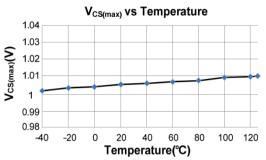
JD3489 的图腾驱动电路的输出级具有 400mA 的输出电流能力,有效降低了开通过程中的交越损耗、提高了效率和增强了系统的可靠性。内部设计有13V的 MOSFET 源极驱动电压箝位功能。同时,驱动电路设计有软驱动功能可有效地优化系统 EMI。

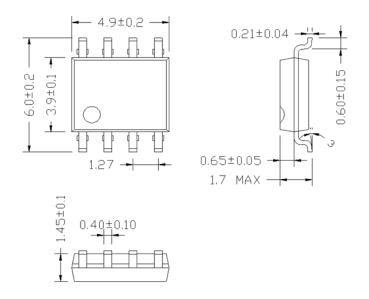



ShenZhen Jingdao Electronic Co.,Ltd.

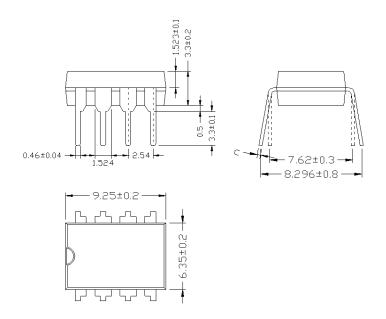

JD3489


恒压、离线电流模式 PWM 控制器


8. 参数特性曲线


ShenZhen Jingdao Electronic Co.,Ltd.

JD3489


恒压、离线电流模式 PWM 控制器

9. 封装尺寸(mm)

9.1 SOP-8

9.2 DIP-8

版本修改信息:

V1.0.....初始版本。

V2.0.....更改地址。